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REGIOSELECTIVE ADDITIONS OF ELECTROPHILES TO OLEFINS REMOTELY PERTURBED. 

THE CARBONYL GROUP AS A HOMOCONJUGATED ELECTRON DONATING SUBSTITIJENT. 
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Summary. Electrophiles attack preferentiaZZy at the C(5) position of 2-norborn-5-enone and 
2-bicycZo[2.2.2Joct-5-enone whereas the C(6) position is preferred for 2-chloronorbom-5-ene- 
-2-carbonitriles and 2-chZorobicyclo[2.2.2]oct-5-ene-2-carbonit~iles. 

The regioselective Diels-Alder additions of 5,6-bis(methyleneI-Z-norbornanone (1) and _ 

5,6-bis(methylene)-2-bicyclo[2.2.2]octanone (11 suggest that the homoconjugated carbonyl group 

in these systems can act as an electron donating substituent on the exocyclic dienes of 1 and 

2'. The hyperconjugative n(C0) 

- 

++&(1,2)++nC(5.6) interaction2 overrides the withdrawing effect _ 

expected for the n*(CO) ++&(5,6) homoconjugative interaction. The CD spectra of optically 

active 1 
4 

and 25 show an "extra" band between those attributed to the carbonyl and diene - _ 

chromophores. Similar "charge-transfer" bands were observed in the gas phase CD spectra of 

2-norborn-5-enone (3) and 2-bicyclo[2.2.2]oct-5-enone (415; they were attributed to mixed _ _ 

transitions with a substantial charge-transfer component of the form n(CO),o+n*C(5,6)5. We 

have now investigated the electrophilic additions of the enones 3 and 4, of the corresponding - 

chlorocarbonitrile derivatives 5 - 8 and of the 2-norborn-5-enone acetals 9 & 10. The results - _ -- 

confirm that the homoconjugated carbonyl group in e,y-unsaturated ketones can play the role 

of an electron-donating group on the rate and the regioselectivity of the olefin additions 

to electrophiles6. 

Benzeneselenylchloride (PhSeCll and bromide (PhSeBr), 2-nitro- (NBSCl) and 2,4-dinitro- 

benzenesulfenyl chloride (DNBSCl) add to olefins 738 and generate bridged seleniranium and sul- 

feniranium ion intermediates whose stability and reactivity can be influenced by a homoconju- 
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gated endocyclic 899 or exocyclic double bond 
10 

and by the medium8. With PhSeCl and PhSeBr in 

CHC13, CH3CN or AcOH, 3 gave the adducts 11 (93%) and J2_ (95%, isolated), respectively. At 20", - - 

the reactions were instantaneous. At -78" in THF, the addition 3 f PhSeBr gave 12 quantitative- - - 
ly in ca. 2-5 h. The arenesulfenyl chlorides added more slowly (CHC13, 20", 12-16 h). With 

EX = PhSeCl : 11 15 - - 
E PhSeBr : 12 16 - - 

NBSCl : 13 17 - - 

19 DNBSCl : 14 18 - ~(E=DNBs) - 

NBSCl only 13 was found (93%, isolated). - In CH3CN or AcOH, the addition of DNBSCl gave 14 - 

(60-70%) together with 19, isolated as the acid 20 (20-30%). In AcOH + 2 eq. of LiC104, 19 was - - 

the major product (80%). No trace of the isomeric adducts 15-18 could be detected (HPLC, -- 

'H-NMR (360 MHz)) in the mother liquors after crystallization of 11-14". Prolonged heating in -- 
CH3CN (90°, 10 h) of the a priori most labile adduct 1213 led to the slow formation of 16, 3 - -- 
and polymers, thus confirming that the adducts were formed under kinetic control. The ezo pre- 

14 ference for the electrophile (Et) attack of 2-norbornenes was expected ; the high preference 

of the endo-C(6) vs e&o-C(5) attack by the counter-ion X- is most simply attributed to the 

higher polarizability of the C(6)-E+ bond rather than of the C(5)-Et bond in the cationic in- 

termediate 22; the limiting structure 21 is more stable than 23 because of the hyperconjugati- - - - 

ve interaction n(CO)++oC(1,2)++pC(6). The carbonyl group behaves as an electron donating group 

(polarizability) rather than as an electron withdrawing group (-M, -1). The "harder" the elec- 

trophile and the stronger the ionizing power of the medium, the more favoured is the 

n(CO),oC(1,2) participation and the 0C(1,2) leakage (frangomeric effect2). 

Steric hindrance of the quenching of X- with 22 could be larger at C(5) than C(6) and thus - 

explain the observed regioselectivity. Another hypothesis would be to 

onto the carbonyl group followed by a simple 1,3-transfer as shown in 

PhSeCl and PhSeBr to 2-bicyclo[2.2.2]oct-5-enone (4) gave the adducts _ 

respectively in high yield " (20", CHC13 or CH3CN, 6-12 h). Since the 

assume an addition of X- 

24. The additions of - 

E 
+EX 

1,- 

J? 

EX = PhSeCl : 15(%70%) 

PhSeBr : 27(Q70%) 

25+26 and 27+28, -- __ 

same high regioselecti- 

+ 

?_6_(a30%) 

28 (~30%) - 



vity was observed for the endo and era attacks of the C(5,6) double bond of 

hypotheses are not valid, at least not for 4 + PhSeCl + 26 and 4 + PhSeBr + - -- 
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4, the two latter - 

28. - 

As expected for olefins perturbed by -1 substituents such as CN and Cl, the additions of 

PhSeCl to the 2-chloronorborn-5-ene-2-carbonitriles 5 and 6 were much slower (48 h, 20", CHC13) - - 

than those of norbornene and 2-norborn-5-enone (3). They were highly stereo- and regioselective - 

giving the corresponding adducts 29 and 30". Similarly, the 2-chlorobicyclo[2.2.21oct-5-ene-2- - - 

-carbonitriles 7 and 8 added PhSeCl very slowly (20% of adducts formed after 72 h at 20", CHC13, _ _ 

excess of PhSeCl) giving the adducts 31 and 32, respectively, with the same high regioselecti- - - 

vity (>95%) as 5 + 29 and 6 + 30, but opposite to that observed with the enones 3 and 4. -- - _ 

This can be attributed to the field effect of the CN and Cl substituents that makes the C(6)-Et 

bond in the bridged seleniranium ion intermediate 33 less prone to nucleophilic displacement - 

than the C(5)-Et bond. The high preference of the endo-C(5) vs. endo-C(6) attack by X- could 

also be attributed to steric hindrance in its approach to the endo face of 33. - 

The dimethylacetal 9 reacted with PhSeCl in CHC13 much faster (20", ca. 10 s) than 5 and 6 _ - - 

and gave 34 + 38. Similarly, the adducts 35 + 39 were formed on treatment with PhSeBr (CDC13, -- -- 

20", ~10 s). The large rate enhancement of these reactions compared with those of the addition 

EX = PhSeCl : 34 (Ql5%) 38 

35 

(~85%) 

PhSeBr : (%15%) 39 

36 40 

(~85%) 

NBSCl : (%90%) 

37 41 

(< 5%) 42 

43 

(s 5%) 

DNBSCl : - (QJ90%) (< 5%) (slO%) -. 44 - 

of PhSeCl to 5 and 6 was unexpected for Me0 substituents which have a field effect and a bulk _ _ 

analogous to those of Cl and CN. With the "harder" electrophiles NBSCl and DNBSCl (in CHC13) 

an opposite regioselectivity was observed, the adducts resulting from the Cl- attack onto C(5) 

were not found (40, 41); 42 and 43 were formed in small amounts together with 36 and 37, res- --- _ - - 

pectively. As in the case of 22, this suggests that the oC(l,2) bond can participate in stabil- - 

izing the cationic intermediates 33 and orienting their reactions. The larger the electronic - 

demand, the more the participation intervenes and competes with the steric effect of the 

substituent Y at C(2) in directing the quenching of the counter-ion. With +M substituents at 

C(2), the leakage of the oC(l,2) bond can become a favorable process. This interpretation was 
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confirmed by the addition of DNBSCl (CD3CN) to the ethyleneacetal 10 that gave only the cyclo- - 

pentenylacetic acid derivative 44. In 10, the n(O) orbitals are forced to stay well aligned - - 

with the 0C(1,2) bond, thus enhancing the electron donating effect of the n(O)++oC(1,2)++C(6) 

interaction. 
2 

The relative fast electrophilic additions of the C(5,6) double bond of 3 and 4 and their 

high regioselectivity opposite to that of the addition of the corresponding chlorocarbonitrile 

derivatives 5-8 confirm that the homoconjugated carbonyl group in 3 and 4 can act as an elec- -- - _ 

tron donating substituent because of the hyperconjugative n(C0) ++oC(1,2)++nC(6) interaction 

(the polarizability of the O=C(2)-C(1) bonds overrides the field effect of the carbonyl group). 
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